

IP-Based Relay Services using the Telcordia Service Interconnection Registry

Prepared for:

VRS IMG

May 21, 2008

Tom Moresco

Principal Product Manager Interconnection Solutions 732 699.4172

tmoresco@telcordia.com

Debbie Guyton, Ph.D.

Senior Solutions Engineer Interconnection Solutions 732 699.2020

dguyton@telcordia.com

Outline

- Telcordia Service Interconnection Registry Overview
- Proposed IP-Based Relay Services Solution
- Pricing
- Implementation Timeline
- Telcordia Qualifications

Telcordia Approach

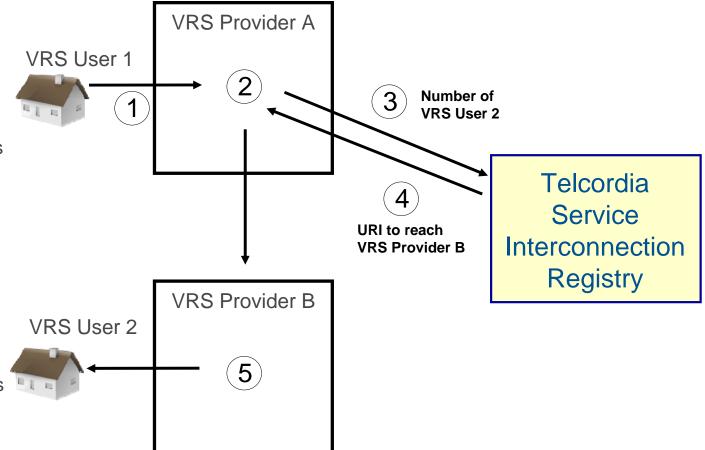
- Deploy a timely, cost-competitive solution to meet core VRS needs
 - Telcordia solution meets all VRS Centralized Database system requirements
 - Leverage existing industry processes (E911, Number Assignment, Number Portability) and Telcordia® Routing Administration (TRA) expertise
- Prudent evolution of capabilities
 - Establish and work with VRS User Group to guide new solution capabilities

Telcordia Service Interconnection Registry

- Secure, centrally-managed, carrier-grade routing data source for IP-enabled services and applications
- At a fundamental level, maps Telephone Numbers (TNs) to IP Addresses or Uniform Resource Identifiers (URIs) to reach destination gateways/switches/end users
- Multi-level data validation capabilities
- Fully-integrated use of LERG[™] Routing Guide and NPAC number portability data to verify the assignee of TNs
- GUI/Batch File/Programmatic input options

Solution Assumptions

- VRS Providers supply the NANP numbers to the central Database for their VRS Users
- A validation process ensures that VRS User-to-Provider mappings in the Central Database are authoritative
- VRS Providers internally maintain their own VRS User lists to limit privacy concerns
- Initially, VRS Providers internally maintain the current IP addresses of their VRS Users
- Evolution to centrally available VRS User IP addresses may occur in the future

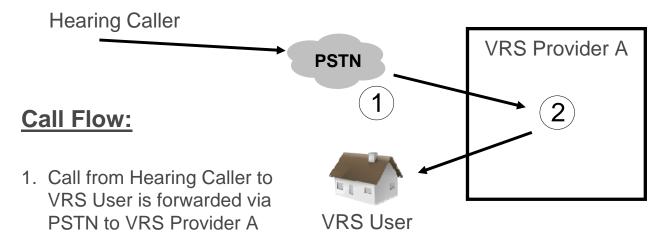

Solution Assumptions (Cont'd.)

- Only authorized VRS Providers query the Centralized Database to ensure information security
- Centralized Database identifies the entry point URI of VRS
 Provider to which the call must be routed for completion
- A Telcordia-moderated VRS (Provider) User Group will track issues to resolution and guide the development of new capabilities
- Telcordia will work with a designated (TBD) Oversight Committee

Call Flow Example 1 – VRS User to VRS User

Call Flow:

- VRS User 1 dials number of VRS User 2
- VRS Provider A consults its local database and determines VRS User 2 is not a customer
- VRS Provider A queries Telcordia Service Interconnection Registry
- VRS Provider A uses the returned URI to route call to VRS Provider B
- 5. VRS Provider B consults its local database and establishes call to VRS User 2

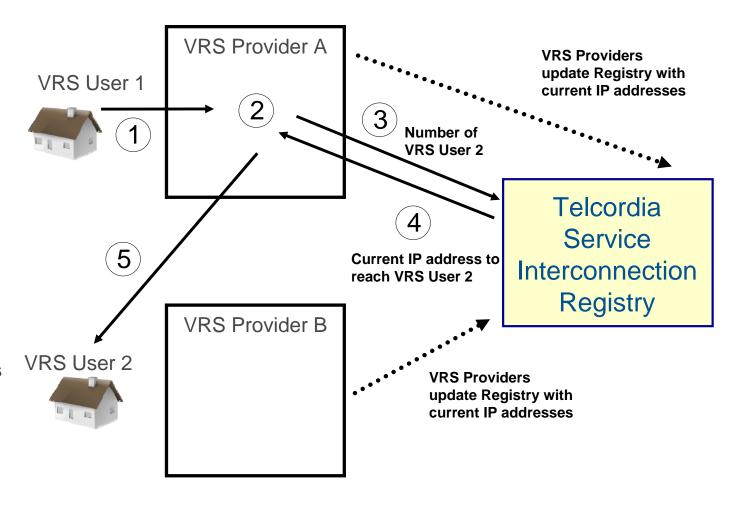

Call Flow Example 2 – Hearing Caller to VRS User

Hearing Caller VRS Provider A **PSTN** Call Flow: 1 Number of **VRS** User 1. Hearing Caller dials 800 number of VRS Provider A and requests call to VRS User Telcordia VRS Provider A consults its local Service database and determines VRS URI to reach User is not a customer Interconnection VRS Provider B 3. **VRS Provider A queries** Registry Telcordia Service VRS Provider B Interconnection Registry 4. VRS Provider A uses the 5 returned URI to route call to VRS Provider B **VRS** User VRS Provider B consults its local 5. database and establishes call to

VRS User

Call Flow Example 3 – Hearing Caller to VRS User

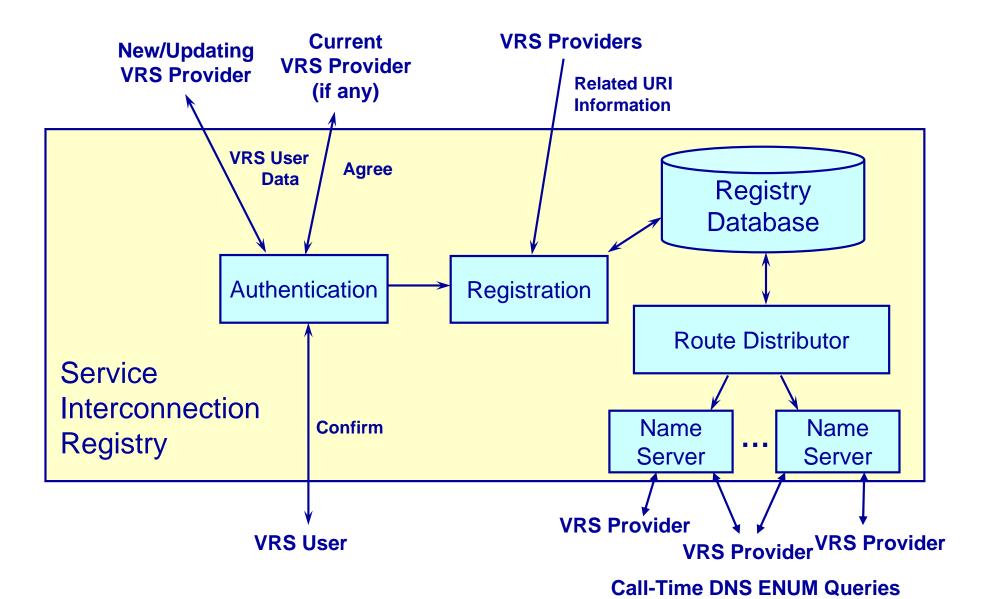
2. VRS Provider A consults its local database and determines VRS User is a customer and completes call


Since VRS User is a customer of VRS Provider A, no query to Centralized Database is necessary

Call Flow Example 4 – VRS User to VRS User Future Evolution

Call Flow:

- VRS User 1 dials number of VRS User 2
- VRS Provider A consults its local database and determines VRS User 2 is not a customer
- VRS Provider A queries
 Telcordia Service
 Interconnection Registry
- 4. Telcordia Service
 Interconnection Registry
 returns current IP address
 of VRS User 2
- 5. VRS Provider A uses the returned IP address to route call directly to VRS User 2



Solution Overview

- Telcordia is Neutral Party to allow "all VRS consumers to be able to place a VRS call through any of the VRS providers' service, and all VRS providers to be able to receive calls from, and make calls to, any VRS consumer"
- Based on Telcordia's established Service Interconnection Registry
 - Central Registry Database
 - Name Servers for Call-time Queries (DNS ENUM and/or SIP Redirect)
- Use regular 10-digit TNs for VRS Users
 - Ported or non-ported
 - Assigned by a LEC, a VRS Provider, or some other agent (potentially Telcordia as a complementary service)
- Leverage E911 solutions currently used for Wireless & VoIP

Proposed Solution Architecture

Solution Overview - Authentication

- VRS Providers supply a VRS User's assigned TN for registration into the Central Database (including an effective date/time)
- If a new VRS User, VRS Provider performs a registration "Add"
- If a VRS User drops service, VRS Provider performs a registration "Delete"
- If a VRS User wants to change VRS Providers, Telcordia will leverage its global Number Portability Clearinghouse technology and expertise to:
 - 1. Receive new VRS Provider input registration "Change Provider" request
 - 2. Request agreement from current VRS Provider based on a time interval
 - 3. On confirmation from current VRS Provider or end of time interval, process new VRS Provider registration "Change Provider" request
 - 4. If current VRS Provider is not valid or rejects "Change Provider," new VRS Provider receives notification to re-work the "Change Provider" request
- Authentication process verifies with VRS User for a new "Add" or "Change Provider" via an agreed upon method (e.g., e-mail)

Solution Overview - Registration

- VRS Providers provide URI information for their routing gateways into the Central Database (including an effective date/time)
- VRS Providers register VRS Users' TNs into the Central Database and specify the associated URI for the designated routing gateway
 - Initial file upload for existing VRS Users
 - Existing Graphical User Interface (GUI) for ongoing registrations
 - An automated message interface can be established in the future
- Authentication of VRS Provider occurs before the registration is processed
- The registration data is validated:
 - TN is validated as a NANP number
 - URI for routing gateway must already be defined in the Database
- VRS Provider is sent a "Successful" response or an error(s) to fix

Solution Overview – Route Distributor

- The Route Distributor performs following functions:
 - Scans the Central Registry database
 - Detects TNs that have activity now ("Add," "Change Provider," "Delete"), either immediate or previously scheduled by Effective Date/Time
 - Formats ENUM Resource Records and distributes to designated Zones in Name Servers
- Multiple Resource records optionally supported for a single TN:
 - Multiple Resource Record Types (e.g., NAPTR, A, AAAA, PTR, etc.) NAPTR with entry-point URI is the expected primary record type for VRS
 - Multiple service-specific NAPTRs (e.g., E2U+SIP, E2U+SMS, etc.) E2U+SIP is the expected primary service for VRS
 - Different services and record types can be mixed in the same zone or segregated into separate zones, for different query sources
- Can distribute to "mirror" site(s) or authorized VRS Provider-operated Name Servers. (Not currently assumed in the VRS architecture due to expressed privacy concerns)

Solution Overview – Call-Time Queries

- The Name Servers perform the following functions:
 - Receive call-time DNS ENUM queries from VRS Providers' callmanagement devices
 - Search the Zone authorized for access by that call management device
 - Return the ENUM Resource Records for the TN from that Zone. Can return multiple service-specific records or record types, if desired
- Carrier-grade, geographically distributed Name Server architecture

Estimated Telcordia Solution Cost

Telcordia proposes a non-transactional cost model that covers the following solution components:

- Centralized VRS routing database system
- 2. Carrier-grade, hosted ENUM DNS (and/or SIP) query service
- 3. VRS user group coordination and facilitation
- 4. Interface to Oversight committee

One time start-up fee of \$5-10K per VRS Provider, plus:

Number of TN Records in DB	Estimated Cost/Record/Month	
0 – 75K records	\$0.50 - \$0.60	
Next 75K records (Up to 150K)	\$0.45 - \$0.55	
Next 150K records (Up to 300K)	\$0.40 - \$0.50	

Complementary Telcordia Services

On request, Telcordia can estimate the cost to provide services in the following potential areas:

- 1. Neutral third party administrator to provide telephone numbers to VRS Providers (and associated services as required)
- 2. Neutral third party administrator to provide telephone numbers directly to VRS Users (and associated services as required)
- 3. Systems engineering services to make E911 services more robust for mobile and remote VRS Users

Implementation Timeline (~5 Months)

Task/Phase	Start	End
Contract Execution	Start	Week 2
Convene VRS User Group	Week 3	Week 5
Establish Governance Process	Week 3	Week 9
Execute contracts with VRS Providers	Week 4	Week 12
Incremental Solution Requirements	Week 6	Week 9
Telcordia Development	Week 8	Week 12
VRS Provider Development	Week 10	Week 15
Joint Solution Testing	Week 16	Week 18
Service Turn-up	Weeks 19-20	

Telcordia Qualifications

- Telcordia has traditionally played a key role in helping support public policy objectives of the FCC
- Telcordia meets <u>all</u> neutrality requirements (Telcordia [®] Routing Administration has been a trusted administrator of PSTN North American routing data for 25+ years)
- Telcordia meets <u>all</u> privacy requirements for database information
- Telcordia is proposing "<u>out-of-the-box</u>" solution components to meet expressed needs at a competitive cost
- Telcordia will leverage its global number portability leadership experience and technology